Para su comodidad, hemos incluido enlaces a Google Translate para traducir la información del producto que todavía tenemos que traducir. Por favor, tenga en cuenta que traducciones automáticas no siempre son totalmente exactas.

Con la tecnología de

Acerca de SSIS JSON Integration Pack

Automatizar escenarios de integración JSON en SSIS.

SSIS JSON Integration Pack is a toolset to automate JSON integration scenarios in SSIS (e.g. Consume/Produce/Parse). Using a simple drag and drop interface you can read data from JSON files or JSON Web Service (i.e. REST API). It includes JSON Source Connector, Export JSON File Task, JSON Parser Transform and JSON Generator Transform.

SSIS JSON Integration Pack

  • Read JSON data from any REST API Web Service using methods such as GET/POST.
  • Read JSON data from single or multiple JSON files (use of wildcard allowed. e.g. c:\data\*.json).
  • Support for Path expression to extract data from any level (e.g. Extract Orders nested under Customer Node).
  • Support for passing custom headers to API Web service.
  • REST API Paging support to loop through multiple requests.
  • Parse source JSON String/Documents into multiple columns/rows.
  • Ability to de-normalize nested JSON data into flat structure.
  • Create simple or nested JSON documents inside DataFlow Task using simple drag and drop approach.
  • Ability to create nested JSON from Multiple datasets.
  • Ability to create single JSON document for all input records or create one document for each input row from ROOT dataset.
  • Export multiple tables/views to JSON files (e.g. Sales% or do SalesJan|SalesFeb).
  • Export SQL query output to JSON file.
  • Inbuilt Layout Editor for creating complex JSON with nested structure (Document Array, Value Array, Nested attributes.
  • Automatically Split exported JSON data into multiple files by Size or Number of records.
  • Automatically Split exported JSON data into multiple files by Split By Column (e.g. SplitBy=Country will create new file for each country).
  • Support for SQL Server 2005, 2008, 2012, 2014, 2016, 2017 (32 bit and 64 bit).